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Application of a statistical method 
to brittle fracture in biaxial loading systems 
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The failure probability of a brittle material stressed in a tensile biaxial loading system is 
investigated. A "failure diagram" relating the two mean biaxial stresses is mapped out for 
different values of the Weibull modulus as a function of volume of material. The signifi- 
cance of the biaxial results in relation to the uniaxial results is discussed by defining the 
term "strength reduction factor" (SRF). The applicability of Weibull analysis to biaxial 
loading systems is also examined. 

1. I n t r o d u c t i o n  
Simple stress systems such as uniaxial tension, 
compression and bending are not frequently 
encountered in load bearing structures and ma- 
chines. In practice, many components are sub- 
jected to biaxial stresses or combined stresses. In 
ductile materials, theories of predicting failure in 
yielding have been adequately described in many 
standard text books, but in a brittle material the 
catastrophic failure depends on the applied load, 
and the distribution of flaw size and orientation 
(with respect to applied load). Jayatilaka and 
Trustrum [1] analysed the failure probability for 
brittle materials subjected to uniaxial tensile 
loading. They found that the Weibull modulus, 
which was hitherto considered as an empirical 
constant, and the brittleness of a material can be 
related to the properties of the flaw size distri- 
bution. 

In this paper the theory described by Jayati- 
laka and Trustrum is extended to analyse the 
failure in a biaxial loading system subjected to 
tensile stresses only. The effects of the volume 
of material under stress are also examined for 
different brittle materials, which are character- 
ized by their Weibull moduli. 

2. Theory 
2.1. Strength of inclined cracks 
Determination of the crack growth of a body 
�9 1977 Chapman and Hall Ltd. Printed in Great Britain. 

containing an inclined crack under a uniaxial 
loading system has been studied by Sih [2] and 
Jayatilaka et  al. [3] using strain energy density 
concepts. They showed that the initial crack 
growth is determined when the strain energy 
density of a body attains a minhnum value. This 
theory was extended by Jayatilaka et  al. to biaxial 
loading systems. If ol and o2 are the biaxial 
stresses (see Fig. 1), 13 is the crack angle and v is 
the Poisson's ratio, then they showed that the 
strength o2 can be expressed as 

a~a = L(fl,  R ,  v) (1) 

q 

O-, 

Figure 1 An inclined crack in a biaxial tensile stress 
system. 
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Figure 2 The family of curves given 
by Equation 2. The normalized 
stress function U(#, R ) =  (r]zra/ 
(2K{c) 

where R = Ol/02 and a is the semi-crack length. 
For v = 0.25 (the value used for brittle materials), 
Equation 1 may be re-written [1] in terms of  the 
critical stress intensity factor, K i c ,  as 

a~a = 2K~c U(/3, R) (2) 
7r 

Fig. 2 shows the family of  curves expressed in 
Equation 2 when o 1 and 02 are both tensile. In 
the general case, when al and a2 are either tensile 
or compressive or a combination of  both,  a "failure 
diagram" (see Fig. 3) can be drawn, on the assump- 
tion that the critical flaw size in a body always lies 
in the direction in which 02 is minimum for a 
given value of  o l /02.  A failure diagram such as 
this one is not a realistic estimate of  the strength 

o f  a brittle material due to the random distribution 
of  flaw sizes and their orientations within a given 
volume of  material. 

The initial crack growth direction of  a body 
containing an inclined, crack unde ra  given loading 
system can be readily determined [2, 3] but the 

subsequent direction of  crack growth cannot be 
determined analytically, using a known theory. It 
is a well known experimental fact that in the case 
of  uniaxial tensile loading systems, the subsequent 
direction of  crack growth, for an inclined crack, 
always turns away from the initial direction of  
propagation and runs normal to the applied load, 
thus producing a catastrophic failure. By contrast, 
in compression, the initial crack does not propa- 
gate catastrophically and grows only slowly to a 

Figure 3 A "failure diagram" drawn on the 
assumption that the critical flaw size in a 
body always lies in the direction in which 
o 2 is minimum for a given value of a~/o 2 . 
aL erit is the stress to failure for Opening 
Mode (uniaxial conditions) ai, erit = KIC / 
~/Oracrlt). 

0"~ l 2"O 
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certain length, as the load is gradually increased. 
This experimental observation [4] can be explained 
since the subsequent crack path gradually aligns 
itself with the axis of the compression loading 
thus requiring a very high stress to propagate it 
further. It follows that in compression, failure of 
one flaw does not lead to total failure. 

In the absence of any experimental or theoreti- 
cal evidence into the nature of the fracture process 
for a biaxial loading system where one of the 
stresses is compressive, the analysis given below to 
determine the failure probability in biaxial loading 
systems is confined only to biaxial tensile loading 
systems (el > 0 ,  (12 >0), where failure of one 
flaw leads to total failure. 

2.2. Statistical approach  
Using Equation 1 and assuming that any crack 
angle/3 is equally likely, the probability of failure, 
F (o2), at stress o2 for one crack is given by 

f ( a 2 )  = f f 2 f(a)dad(3 
7T 

0 ~< L(/3, R,p)  ~< 022 (3) 
a 

0 ~< /3 ~< rr/2 

where f(a) is the probability density of the semi- 
crack length. It was shown in [1] that f ( a )can  be 
closely fitted by the expression 

cn-la-n 
f (a)  - e -~/a, for a > 0 (4) 

where c/n is the mode of the distribution and n 
measures the rate at which the density tends to 
zero. On using Equations 2 and 4, and then 
substituting V = c/a, Equation 3 becomes 

2 v n-2 e" 
F(a2) =~o| |~o~- ~ . ~  dVd/3 (5) 

where x = o~rrc/2K~cU(/3, R). One integration 
gives 

~:,2 _e_X) 2 d/3, F(o2) = (1 for n = 2 (6) 
~T 

-f~n[l--e-X(l+x+X---~)]2d/3, forn=4 F(a2) -~o 
(7) 

and 

F (o2 ) = J72 [1-- e-X (l + x + X---~ + x---~ + x4 ' ] 2 d 

for n = 6 (8) 

For N cracks, the probability of failure,Pf, at stress 
02 is given by 

P~ = 1--  [1 -F(o2)l N, (9) 

since 1 -- Pf is the probability of survival of all N, 
cracks. The mean stress, 62, can now be evaluated 
from 

o2 =~o  (1--Pf)do~ (10) 

The Integrals 6, 7 and 8 were evaluated numeri- 
cally for the values R = 0, 0,4, 0.6 and 1.0, using 
the computed values of U(/3, R) (see Fig. 2). Then 
the normalised mean stress was calculated by the 
numerical integration of Equation 10 for a range 
of values of N. Fig. 4 shows the normalized mean 
stress, 62/oI, plotted against the number of cracks 
for R = 0 and 1.0, which correspond to uniaxial 
and equal biaxial tensile loading, respectively. The 
values for R = 0.4 and 0.6 follow a similar pattern 
and lie between the R = 0 and 1.0 values. In Fig. 
5, 61/o: is plotted against O2/O I for n = 2, 4, 6 
a n d N =  40, 100,200,400,600.  

2.3. Relation with Weibull modulus 
It follows from Expression 9 that when N is large 

P f "  1 -- exp [--NF(o2)] (11) 

and for x ~ 1, Equation 5 becomes 

r ~r/2 2 x n - 1  

F(a2 ) Jo rr ( n -  1 ) ~ .  ~ d/3 (12) 

where x = a~rrc/2K~c U(/3, R). Thus Pf takes the 
form, 

P~ --~ 1 -- exp[ - -Nkl (n ,  R) o~ n-2 ] (13) 

where 

2 
-~o 2K~c--~/3,R) 7r(n -- 1 ~ !  all3 

(14) 

The approximate expression (13) for Pf is identi- 
cal to that used in Weibull analysis, when the 
threshold stress is assumed to be zero, as for most 
brittle materials. Consequently the relation 

m = 2 n - - 2  (15) 
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Figure 4 L o g a r i t h m i c  p lo t  o f  n o r m a l i z e d  m e a n  stress  in  t e rms  o f  n u m b e r  of  cracks.  S t ra igh t  l ines  co r r e spond  to  the  

"Weibu l l  s lopes" .  

between the Weibull modulus m and the parameter 
n of the crack size distribution found by [1] can 
be extended to biaxial loading. In the case n = 2 
and R = 1 for which U(~, R) = 0.5 (see Fig. 2), it 
follows from Equations 6 and 9 that 

F(a2) = 1--exp(--o~Trc/K~) (16) 

and 
Pf = 1--exp(--Xo~Tre/K~c) (17) 

so the strength, o2, exactly follows the Weibull 
distribution with m = 2. 

The validity of this approximation can be tested 
by plotting 62 against N, since for the Weibull 
distribution (13), 

62 = [Nkl(n,R)] -u(2"-2) F (1 
\ 

o r  

logo2 = logP  t + 2 n _ 2  

1) 
+ 2 n - - 2  

(18) 

1 1 
2n--------2 logkl(n,R) 2 n _ 2 1 o g N  (19) 

where I" is the "gamma" function. Equation 19 
shows that for a good approximation the graph of 
log 62 against log N, should be a straight line of 
gradient (2n - 2) -~ , whose intercept varies with 
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n and R. In Fig. 4 straight lines of slopes 1/2, 
1/6, 1/10 corresponding to n = 2, 4, and 6, have 
been drawn for comparison. The results show that 
the approximation is excellent for n = 2 and 
reasonable for n = 4 and 6, provided N > 100. 

As was noted in [1], even i fc  is replaced by the 
mode, c/n, of the distribution of crack size in the 
definition of ai, the mean strength, 62, for the 
smaller values of n is less and hence materials with 
lower values of the Weibull modulus m are more 
brittle. This can be explained in terms of the 
greater variability of crack size for small n and the 
consequent greater probability of a large crack 
being present. 

3. Discussion 
Previous statistical methods to determine the 
strength of a brittle material, based on empirical 
data, are limited to uniaxial tensile loading systems. 
Hence, an important outcome of the work de- 
scribed in this paper is the development of a 
theory that cannot only be applied to uniaxial 
tensile loading systems, but also to more complex, 
biaxial tensile loading conditions. 

The effect of a biaxial stress on the fracture 
strength of a brittle body, containing randomly 
orientated flaws, can be observed from Fig. 5. On 
further analysis, this effect can be best explained 
with respect to the uniaxial stress effects by 
defining a suitable term, called the "strength 
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Figure 5 A "failure diagram" relating 
the two normalized mean biaxial 
stresses. 

reduct ion factor" (SRF), as equal to the ratio of  
the mean failure stresses (higher stress in the case 
of  biaxial loading) in biaxial loading to uniaxial 

loading conditions.  That is, 

mean failure stress in biaxial loading 
SRF = 

mean failure stress in uniaxial loading. 

Table I shows a set of  values for SRF under equal 
biaxial stresses (R = 1) as a function of  number of  
cracks. It is evident that  for a given material the 
SRF remains fairly constant for the range of  
cracks considered. Thus, it leads to an important  
result that  it is possible to postulate values for 
SRF (see Table II), independent  of  the volume, for 
different materials. These values should prove to 
be very useful to a design engineer who, very 
often, has to design structures subjected to biaxial 
stresses using a knowledge of  failure characteristics 
under uniaxial conditions; the failure stresses in 
uniaxial conditions can be readily obtained from 
handbooks  or by performing simple experiments.  

The result that  the SRF is almost independent  
of  volume also gives support  to the validity of  the 
approximations used to derive the Weibull distri- 
but ion (13). 

Using Equation 18, 

SRF - o2(R) - -  k__l (n, R)]  -'/(2n-2) 
- 

62(0) 

which shows that  the SRF is only a function of  n 

and R and so independent of  the number of  cracks, 
N, and hence of  the volume. In particular when 

R = 1, an explicit expression can be found for the 
SRF. It follows from Equation 14 that  

TAB LE I Values of SRF for equal biaxial loading (R = 
1) conditions. 

N SRF (%) 

n = 2  n = 4  n = 6  
(m = 2) (m = 6) (m = 10) 

40 71.7 81.4 84.6 
70 72.0 81.6 85.2 

100 72.1 81.9 85.3 
200 72.0 82.4 85.8 
400 72.0 82.5 86.1 
600 72.1 82.6 86.3 

1000 72.0 82.6 86.6 

TABLE II Average values of SRF for different bi- 
axial loading systems. The values given in parentheses 
refer to the standard deviations. 

n m SFR (%) 

R = 1.0 R = 0.6 R = 0.4 

2 2 71.7 86.9 93.6 
(0.1) (0.1) (0.4) 

4 6 82.1 95.5 98.6 
(0.5) (0.2) (0.1) 

6 10 85.7 97.3 99.3 
(0.7) (0.4) (0.2) 
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kl(n,  1) f [U(/3, 1)] '-"d/3 
_ o ( 2 1 )  

rr/2 
kx(n,O) f [U(/3, O)]a_ nd/3 

0 

Since U(/3, 1 ) = 0 . 5  (see Fig. 2) and U(/3, 0 ) 2  

4 ~" - ~  (see [1]),  

kl (n, 1) 7r2 "-2 
- - n ( 2 2 )  

kl(n,  O) ~rn-12 n-2 

and hence, 

SRF = n-1/(2n-2) (23) 

The values for the SRF given by Equation 23 for 
n = 2, 4, 6 are 70.7%, 79.4% and 83.6%, respect- 
ively, which are close to the values given in Table 
I. 

The Expression 23 shows that the strength 
reduction factor apporaches unity as n increases, 
i.e. for large values of  the Weibull modulus. This 

can be explained by observing that the variability 
of  crack size in the assumed model, given by 
Equation 4, is smaller for the larger values of  n. 
Consequently, in any direction the most critical 
crack is of  roughly the same size and hence the 
fracture of  a brittle body is only slightly reduced 
by making the stress system biaxial rather than 
uniaxial. 
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